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Existing LESR model
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• Energy storage bids as a combination of generator and flexible demand
• Discharge bids – discharge if price is above bids
• Charge bids – charge if price is below bids
• System operator monitors SoC and efficiencies – ensure not to over 

discharge or charge



Bidding and dispatch model

• FERC Order 841
• Storage bid as a generator + flexible demand
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CAISO bid data:



Newly proposed energy bids
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• Segment bids with respect to storage state-of-charge
• Lower SoC – higher bid value



Example
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• Example: 25MW/100MWh storage
• Charge bid – 1 segment at $20/MWh

• Storage will charge whenever price is below $/20MWh
• Discharge bids – 3 segments

• $45/MWh (100-80), $60/MWh (80-15), $100/MWh (15-0)
• Storage will discharge to 80% SoC if price above 45, 15% if price is above 

60, 0% if price is above 100.



Connection to dynamic programming

• Objective: generate optimal energy-segment bids to 
maximize arbitrage profit

• Method: dynamic programming – energy segment bids 
based on value-to-go function

• Advantages: 
• in-house algorithm that solves the bidding dynamic 

programming within ms.
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Formulation – deterministic arbitrage
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Price

Stored energy Discharge

Charge

Value-to-go function

Cost
Maximized profit

Power rating:

No discharge when negative price:

SoC efficiency:
Energy ratings:



Solution algorithm
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Update the derivative of value function analytically (𝑞!(𝑒) = 𝜕𝑄!(𝑒)/𝜕𝑒):



Marginal SoC opportunity value

• 𝑞!(𝑒)
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Marginal opportunity value diminishes with higher SoC



From value function to SoC bids
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Revenue Cost – to be engineered into bids

SoC constraints:

Storage cost curve: Discharge curve

Charge curve

Profit maximization:



Example
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Price profile:
Storage parameters:

- 4 Hour duration
- 85% round-trip eff.
- 10$/MWh discharge cost

+

Solve dynamic programming 
(<1ms computation time)

1-seg bid (power bids) 5-seg bid (SoC bids)



Dispatch model – Single-period
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Power bid model:

SoC-seg bid model:

Piece-wise linear 
value function bids

Update power rating
to reflect SoC limits



Arbitrage profit in NYC 2019
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100% - real-time arbitrage with SoC bids, perfect price forecast

real-time arbitrage with power bids, perfect price forecast



Arbitrage profit in NYC 2019
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Realtime arbitrage with SoC bids, day-ahead price forecast

Realtime arbitrage with power bids, day-ahead price forecast



Arbitrage profit in NYC 2019
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Day-ahead arbitrage with SoC bids, perfect price forecast

Day-ahead arbitrage with power bids, perfect price forecast



Arbitrage profit in NYC 2019
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100%: SoC bids with perfect price prediction (perfect arbitrage)
RT-PB-PF: power bids with perfect price prediction
RT-SB-DF: SoC bids with day-ahead price predictions
RT-PB-DF: power bids with day-ahead price predictions
DA-SB-DF: SoC bids in day-ahead markets
DA-PB-DF: power bids in day-ahead markets

• SoC-seg bids provide 5% to 10% improvement compared to power bids 



Advanced bidding design

Solve a dynamic programming arbitrage 
problem with:

• Uncertainties

• Nonlinear storage models
• SoC-dependent efficiencies
• SoC-dependent power rating
• SoC-dependent degradation cost
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Stochastic dynamic programming

Local linearization



Uncertainty
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Single-period optimization:

Value function updates:

Solves using analytical value function update with one backwards sweep



Profit in New York State
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P2E – power to energy ratio
MC – marginal cost of discharge
Trained using 2017-2018
Tested on 2019



Uncertainties
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Price prediction with uncertainties

Storage value at hour 12

Marginal SoC value at Hour 12

Value slope increases with uncertainty



Variable efficiency
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Efficiency depends on SoC

Look up efficiency values based 
on input SoC during valuation –
local linearization



Variable efficiency 
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3 segment variable efficiency model

Comparison to Gurobi in deterministic arbitrage
• Cons_LP – constant efficiency using linear programming
• Cons_DP – constant efficiency using dynamic programming
• Var_MILP – variable efficiency using MILP
• Var_DP – variable efficiency using dynamic programming

Stochastic arbitrage comparison
• Valuation using constant or variable efficiency model
• Simulate control over a variable efficiency storage model

MILP model:



Nonlinear storage model
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Update value based on input SoC 𝑒
• P – power rating
• 𝜂 – efficiency
• c – degradation cost
No impact on computation speed to consider nonlinear models
• Full year solution time (100k time steps): < 5 seconds
May need to increase time granularity for better local linearization
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Thanks!
Contact: bx2177@columbia.edu

https://bolunxu.github.io/
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