SoC-segment Bidding Model for Energy Storage

Bolun Xu

Assistant Professor

Earth and Environmental Engineering

Columbia University

March 28th, 2022

Existing LESR model

- Energy storage bids as a combination of generator and flexible demand
- Discharge bids discharge if price is above bids
- Charge bids charge if price is below bids
- System operator monitors SoC and efficiencies ensure not to over discharge or charge

Bidding and dispatch model

- FERC Order 841
- Storage bid as a generator + flexible demand

CAISO bid data:

Newly proposed energy bids

- Segment bids with respect to storage state-of-charge
- Lower SoC higher bid value

Example

- Example: 25MW/100MWh storage
- Charge bid 1 segment at \$20/MWh
 - Storage will charge whenever price is below \$/20MWh
- Discharge bids 3 segments
 - \$45/MWh (100-80), \$60/MWh (80-15), \$100/MWh (15-0)
 - Storage will discharge to 80% SoC if price above 45, 15% if price is above 60, 0% if price is above 100.

Connection to dynamic programming

- Objective: generate optimal energy-segment bids to maximize arbitrage profit
- Method: dynamic programming energy segment bids based on value-to-go function
- Advantages:
 - in-house algorithm that solves the bidding dynamic programming within ms.

Formulation – deterministic arbitrage

Power rating:

No discharge when negative price:

SoC efficiency:

Energy ratings:

$$0 \le b_t \le P, \ 0 \le p_t \le P$$
$$p_t = 0 \text{ if } \lambda_t < 0$$
$$e_t - e_{t-1} = -p_t/\eta + b_t \eta$$
$$0 \le e_t \le E$$

Solution algorithm

$$Q_{t-1}(e_{t-1}) = \max_{b_t, p_t} \lambda_t(p_t - b_t) - cp_t + Q_t(e_t)$$

Update the derivative of value function analytically $(q_t(e) = \partial Q_t(e)/\partial e)$:

$$q_{t-1}(e) = \begin{cases} q_t(e+P\eta) & \text{if } \lambda_t \leq q_t(e+P\eta)\eta \\ \lambda_t/\eta & \text{if } q_t(e+P\eta)\eta < \lambda_t \leq q_t(e)\eta \\ q_t(e) & \text{if } q_t(e)\eta < \lambda_t \leq [q_t(e)/\eta+c]^+ \\ (\lambda_t-c)\eta & \text{if } [q_t(e)/\eta+c]^+ < \lambda_t \\ & \leq [q_t(e-P/\eta)/\eta+c]^+ \\ q_t(e-P/\eta) & \text{if } \lambda_t > [q_t(e-P/\eta)/\eta+c]^+ \end{cases}$$

Marginal SoC opportunity value

• $q_t(e)$

Marginal opportunity value diminishes with higher SoC

From value function to SoC bids

Example

Dispatch model – Single-period

Power bid model:

$$\min_{\substack{p_{m,t}, b_{m,t}, g_{k,t}}} \sum_{k} C_k(g_{k,t}) + \sum_{m} c_{m,t}^{p} p_{m,t} - c_{m,t}^{b} b_{m,t}$$
subjects to
$$0 \leq p_{m,t} \leq P_m^{p}(e_{m,t-1})$$

$$0 \leq b_{m,t} \leq P_m^{p}(e_{m,t-1})$$

 $\min_{p_{m,t}, b_{m,t}, g_{k,t}, e_{m,t}} \sum_{t} C_k(g_{k,t}) + \sum_{t} c_m p_{m,t} - v_{m,t}$

SoC-seg bid model:

Piece-wise linear value function bids

subjects to

$$0 \le p_{m,t} \le P_m^{p}(e_{m,t-1})$$

 $0 \le b_{m,t} \le P_m^{b}(e_{m,t-1})$
 $e_{m,t} = e_{m,t-1} - p_{m,t}/\eta_m + b_{m,t}\eta_m$
 $E_{m,0} \le e_{m,t} \le E_{m,J}$
 $v_{m,t} \le c_{m,j,t}^{e}(e_t - E_j) + \sum_{\tau=1}^{j-1} c_{m,\tau,t}^{e}(E_{m,\tau} - E_{m,\tau-1})$

100% - real-time arbitrage with SoC bids, perfect price forecast

• SoC-seg bids provide 5% to 10% improvement compared to power bids

100%: SoC bids with perfect price prediction (perfect arbitrage) RT-PB-PF: power bids with perfect price prediction RT-SB-DF: SoC bids with day-ahead price predictions RT-PB-DF: power bids with day-ahead price predictions DA-SB-DF: SoC bids in day-ahead markets DA-PB-DF: power bids in day-ahead markets

Advanced bidding design

Solve a dynamic programming arbitrage problem with:

Uncertainties Stochastic dynamic programming

- Nonlinear storage models
 - SoC-dependent efficiencies
 - SoC-dependent power rating
 - SoC-dependent degradation cost

Local linearization

Uncertainty

Single-period optimization: $Q_{t-1}(e_{t-1} \mid \lambda_t) = \max_{b_t, p_t} \lambda_t \cdot (p_t - b_t) - cp_t + V_t(e_t \mid \lambda_t)$

Value function updates:

$$V_t(e_t \mid \lambda_t) = \mathbb{E}_{\lambda_{t+1}} \Big[Q_t(e_t \mid \lambda_{t+1}) \Big| \lambda_t \Big]$$

Solves using analytical value function update with one backwards sweep

(a) New York State Price Zones.

Profit in New York State

P2E – power to energy ratio MC – marginal cost of discharge Trained using 2017-2018 Tested on 2019

Zone	P2E	Prorated Profit Ratio [%]			
		0 MC	10 MC	30 MC	50 MC
NYC	1	59.9	66.1	71.8	78.5
	0.5	67.2	72.0	78.7	84.3
	0.25	76.2	78.9	85.3	90.8
LONGIL	1	56.0	59.0	62.1	62.3
	0.5	63.5	65.1	66.7	67.4
	0.25	72.7	72.5	71.7	72.0
NORTH	1	58.4	63.5	70.1	75.3
	0.5	69.5	74.6	81.1	83.6
	0.25	79.4	83.7	90.2	88.0
WEST	1	67.1	70.9	75.2	78.2
	0.5	74.1	77.3	80.1	81.8
	0.25	82.2	84.2	85.8	86.7

Uncertainties

Price prediction with uncertainties

Marginal SoC value at Hour 12 day-ahead $\sigma = 10$ $\sigma = 30$ $\sigma = 50$ SoC [%]

Value slope increases with uncertainty

Variable efficiency

$$Q_{t-1}(e_{t-1}) = \max_{b_t, p_t} \lambda_t (p_t - b_t) - cp_t + Q_t(e_t)$$

$$0 \le b_t \le P, \ 0 \le p_t \le P$$

$$p_t = 0 \text{ if } \lambda_t < 0$$

$$e_t - e_{t-1} = -p_t / \eta^p(e_{t-1}) + b_t \eta^b(e_{t-1})$$

$$0 \le e_t \le E$$

Efficiency depends on SoC

Look up efficiency values based on input SoC during valuation – local linearization

$$\begin{aligned} q_{t-1}(e) &= \\ \begin{cases} q_t(e+P\eta) & \text{if } \lambda_t \leq q_t(e+P\eta)\eta \\ \lambda_t/\eta & \text{if } q_t(e+P\eta)\eta < \lambda_t \leq q_t(e)\eta \\ q_t(e) & \text{if } q_t(e)\eta < \lambda_t \leq [q_t(e)/\eta+c]^+ \\ (\lambda_t-c)\eta & \text{if } [q_t(e)/\eta+c]^+ < \lambda_t \\ &\leq [q_t(e-P/\eta)/\eta+c]^+ \\ q_t(e-P/\eta) & \text{if } \lambda_t > [q_t(e-P/\eta)/\eta+c]^+ \\ -\mathbf{21} - \end{aligned}$$

Variable efficiency

3 segment variable efficiency model

Comparison to Gurobi in deterministic arbitrage

- Cons_LP constant efficiency using linear programming
- Cons_DP constant efficiency using dynamic programming
- Var_MILP variable efficiency using MILP
- Var_DP variable efficiency using dynamic programming

$$\begin{split} \textbf{MILP model:} \quad \max_{p_{k,t}, b_{k,t}} \quad \sum_{t}^{T} \sum_{k}^{K} \pi_{t} \cdot (p_{k,t} - b_{k,t}) - cp_{k,t} \\ \textbf{s.t.} \quad 0 \leq \sum_{k}^{K} b_{k,t} \leq P, \ 0 \leq \sum_{k}^{K} p_{k,t} \leq P \\ e_{k,t} - e_{k,t-1} = -p_{k,t} / \eta_{k}^{p} + b_{k,t} \eta_{k}^{b} \\ E_{1}u_{1,t} \leq e_{1,t} \leq E_{1} \\ E_{k}u_{k,t} \leq e_{k,t} \leq E_{k}u_{k-1,t}, \quad \forall k \in \{2, ..., K-1\} \\ \quad 0 \leq e_{K,t} \leq E_{K}u_{K-1,t} \end{split}$$

Stochastic arbitrage comparison

- Valuation using constant or variable efficiency model
- Simulate control over a variable efficiency storage model

Nonlinear storage model

Update value based on input SoC e

- P power rating
- η efficiency
- c degradation cost

No impact on computation speed to consider nonlinear models

• Full year solution time (100k time steps): < 5 seconds May need to increase time granularity for better local linearization

$$q_{t-1}(e) = \begin{cases} q_t(e+P\eta) & \text{if } \lambda_t \leq q_t(e+P\eta)\eta \\ \lambda_t/\eta & \text{if } q_t(e+P\eta)\eta < \lambda_t \leq q_t(e)\eta \\ q_t(e) & \text{if } q_t(e)\eta < \lambda_t \leq [q_t(e)/\eta+c]^+ \\ (\lambda_t-c)\eta & \text{if } [q_t(e)/\eta+c]^+ < \lambda_t \\ \leq [q_t(e-P/\eta)/\eta+c]^+ \\ q_t(e-P/\eta) & \text{if } \lambda_t > [q_t(e-P/\eta)/\eta+c]^+ \end{cases}$$

Collaborators and References

Nik Zheng PhD student, Columbia University

Joshua Jaworski MS student, Columbia University

Gabe Murtaugh Storage Sector Manager, CAISO

References:

CAISO new market model:

http://www.caiso.com/InitiativeDocuments/Presentation-EnergyStorageEnhancements-RevisedStrawProposal-Mar21-2022.pdf

N. Zheng, J. J. Jaworski and B. Xu, "Arbitraging Variable Efficiency Energy Storage using Analytical Stochastic Dynamic Programming," in *IEEE Transactions on Power Systems*, doi: 10.1109/TPWRS.2022.3154353.

Impact of Bidding and Dispatch Models over Energy Storage Utilization in Bulk Power Systems https://arxiv.org/abs/2201.03421

Thanks!

Contact: bx2177@columbia.edu

https://bolunxu.github.io/