EAEE E4220: Energy System Economics and Optimization – Fall 2021

Learning Outcomes:

Upon completing this course, the student should be able to:

- Define and discuss the major problems in power system economics
- Formulate these problems as optimization problems
- Solve simple power system optimization problem by hand
- Use optimization packages to solve more complex problems
- Describe the various types of electricity markets and discuss their purposes
- Discuss bidding strategies in electricity markets with perfect and imperfect competition
- Explain and calculate locational marginal prices
- Explain and the economic pros and cons of different energy resources
- Discuss the factors that affect energy system investments

Time: Mon, Wed 1:00 pm – 2:30 pm; **Classroom:** 602 Hamilton Hall

Zoom Meeting ID: See Courseworks.

Instructor: Bolun Xu

Office:Mudd 918GEmail:bx2177@columbia.eduOffice hours:Thu 9:30 am - 11:00 am (in office & zoom)

Teaching Assistant: Zhuoran Zhang

Office:Mudd 927Email:zz2322@columbia.eduOffice hours:Wed 9:30 am - 11:00 am (in office & zoom)

Grader: Shizheng "JJ" Tie

Email: <u>st3427@columbia.edu</u>

Grading:	Homework:	30%
0	Midterm:	30%
	Final project:	30%
	Participation:	10%

Website: https://courseworks2.columbia.edu/courses/109788 (Courseworks)

All group communications will take place through Courseworks, use it to

- Check for announcements
- Get lecture slides and other material
- Get homework and project assignments
- Submit your homework
- Get your grades
- Ask questions

Textbooks [All Available Online via Columbia Library]:				
Required:	K&S: Kirschen & Strbac: Fundamentals of Power System Economics, Second Edition, Wiley, 2018			
Supplemental:	M: Masters: Renewable and Efficient Electric Power Systems, Wiley 2004 C&B: Conejo & Baringo: Power System Operations, Springer 2018			

Tentative	timetable	of	topics:	

Week 1	9/6	Labor day	
W 1. 0	9/8	INO CLASS	M = 12122 Dec $C = 1$
week 2 9	9/13	Introduction	M Ch3.1-3.2, D&S Ch1
W 1 2	9/15	Basic concepts from economics	D&S Ch2.1-2.3
Week 3 9/	9/20	Risks, markets, and contracts	D&S Ch2.4-2.6
XX 7 1 A	9/22	Organization of electricity markets	D&S Ch3
Week 4	9/27	Centralized and bilateral markets	
XX 1 7	9/29	Market experiment I	
Week 5	10/4	Economic dispatch	C&B Ch7
W 1 (10/6	Linear programming	
Week 6	10/11	Solution algorithms for economic dispatch	
	10/13	Unit commitment	
Week /	10/18	Mixed-integer linear programming	
	10/20	Transmission in electricity markets	D&S Ch5.1-Ch5.3.4
Week 8	10/25	Security constrained economic dispatch	
	10/27	Midterm	
Week 7	11/1	No class	
	11/3	Financial transmission rights	D&S Ch5.3.5
Week 8	11/8	Participating electricity markets	D&S Ch4
	11/10	Power system operation	D&S Ch6
Week 9	11/15	Ancillary services markets	
	11/17	Renewable and storage	M6.1-6.5,6.11,8.5,9.4-9.6
Week 10	11/22	Market experiment II	
	11/24	No class	
Week 11	11/29	Power system expansion	D&S Ch8
	12/1	Planning under uncertainties	
Week 12	12/6	Decomposition methods	
	12/8	Project presentation	
Week 13	12/13	Project presentation	

Homework

Due Thursdays at 11:59 PM ET. Submission by file upload via Courseworks Assignment, only PDF files are accepted. MS Word or LATEX (<u>www.overleaf.com</u>) or Jupyter Notebook is highly recommended.

Homework submitted after the due date will be charged 10% late penalty; no homework accepted after Friday.

Market experiments

Participation of market experiments counts towards 10% of the total course credit as participation. Market experiment results will be recorded and the top 3 will receive 3% extra total course credits.

Project

The presentation video for the project is due on Sunday, December 12th. The final project is due on **Monday, December 20th**. No later submission will be accepted.

Grading:

Presentation 20% Formulation 30% Code format 20% Result analysis 30%

Optimization Software

Students can use any languages and optimization packages for homework and the project. The recommended set-up in this course is Jupyter Notebook + Python + CVXPY. Please check on Courseworks -> Files -> Optimization_Setup_Guides for set-up instructions.